Foundation Stage

Key Vocabulary: share, half, equal, unequal, fair, unfair, groups, each.

\begin{tabular}{|c|c|c|c|}
\hline Objective \& Strategy \& Concrete \& Pictorial \& Abstract \\
\hline To begin to divide by sharing. \& \begin{tabular}{l}
Children will use a range of concrete resources to share beginning to demonstrate understanding of equal groups. \\
Recognise using vocabulary such as 'fair' and 'unfair' groups in context.
\end{tabular} \& \begin{tabular}{l}
Children will understand equal groups and share items out in play and problem solving. \\
Step 1: Count how many you have. \\
Step 2: Share them equally using 1 to each group at a time, so each group has the same amount. \\
Step 3: Count how many are in each group.

\end{tabular} \&

\hline
\end{tabular}

Loddington CE Primary Calculation Policy- Division

Year 1

Key Vocabulary: division, dividing, grouping, sharing, doubling, halving, array, number pattern, equal, odd, even, dividend, divisor, quotient.

Objective \& Strategy	Concrete	Pictorial	Abstract
To divide by sharing To half a number up to 20.	Children will use concrete resources, including uni-fix cubes to share into equal groups. Children will also be able to half a number up to 20 by sharing into equal groups. Stem Sentence: 12 divided equally between $\underline{2}$ groups equals 6 in each group.	Children will draw jottings and have pictorial representations to demonstrate knowledge of sharing into equal groups. $12 \div 2=6$ Stem Sentence:	Children will be introduced to simple word problems to solve division problems. 12 sweets are shared between 2 people. How many do they have each? $12 \div 2=6$ Stem Sentence: 12 divided equally between 2 groups equals 6 in each group.
To divide by grouping.	Children will begin to solve division problems, which require sorting objects and quantities into $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s . Children will use concrete resources such as cubes, counters or objects to aid understanding. 10 cubes are put into groups of 2 . How many groups? Stem sentence: $\underline{10}$ cubes are put into groups of $\underline{2}$. There are $\underline{5}$ equal groups.	Children will also experiment dividing by grouping using the bar model. The children will be given a number or picture representatives. This will represent the whole. They then need to split the whole into the number of groups they are dividing by and work out how many would be in each group. 10 cubes are put into groups of 2 . How many groups? Stem sentence: $\underline{10}$ cubes are put into groups of $\underline{2}$. There are $\underline{5}$ equal groups.	

Loddington CE Primary Calculation Policy- Division

Year 2

Key Vocabulary: division, dividing, grouping, groups of, sharing, doubling, halving, array, number pattern, equal, unequal, odd, even, dividend, divisor, quotient.

Objective \& Strategy	Concrete	Pictorial	Abstract
To divide by sharing.	Children will use a range of concrete resources, including cubes to share objects and quantities into equal groups. I have 12 cubes, can you share them equally into 3 groups? Stem Sentence: 12 divided equally between $\underline{3}$ groups equals 4 in each group.	Children will use pictures and shapes to share quantities. $12 \div$ 4 Children will also be able to use the bar model to show and support their understanding. $\text { e.g. } 12 \div 4=3$ Stem Sentence: 12 divided equally between $\mathbf{3}$ groups equals 4 in each group. 12 divided equally between 4 groups equals 3 in each group.	Children will be writing division number sentence using the divide symbol. $\begin{aligned} & 12 \div 3=4 \\ & 12 \div 4=3 \end{aligned}$ Stem Sentence: 12 divided equally between $\underline{3}$ groups equals 4 in each group. 12 divided equally between 4 groups equals $\underline{3}$ in each group.

To divide by grouping.	Children will begin to solve division problems, which require sorting objects and quantities into $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s . Children will use concrete resources such as cubes, counters or objects to aid understanding. 10 cubes are put into groups of 2 . How many groups? Stem sentence: $\underline{10}$ cubes are put into groups of $\underline{2}$. There are $\underline{5}$ equal groups.	Children will also experiment dividing by grouping using the bar model. The children will be given a number or picture representatives. This will represent the whole. They then need to split the whole into the number of groups they are dividing by and work out how many would be in each group. 10 cubes are put into groups of 2 . How many groups? Stem sentence:	Children will use grouping to solve missing number problems e.g. $10 \div ?=2$ Stem Sentence 10 cubes are put into ? equal groups. There are 2 in each group.

Year 3

Key Vocabulary: division, dividing, grouping, groups of, sharing, doubling, halving, array, number pattern, equal, unequal, odd, even, dividend, divisor, quotient, remainder, division fact.

Loddington CE Primary Calculation Policy- Division

Objective	Concrete	Pictorial	Abstract
To divide 2 digit numbers by partitioning.	Children will use concrete resources, including place value counters and base ten to divide by partitioning $96 \div 3=$ Step 1: Partition the dividend into tens and ones Step 2: share the tens into equal groups as shown by the divisor. (If they do not divide exactly exchange the remaining tens for ones) Step 3: share the ones into equal groups as shown by the divisor. Step 4: Add the tens and ones from one group to find the quotient.	Children will continue to use partitioning representing the base 10 pictorially $96 \div 3=$ Children will also continue to use the bar model to support their understanding.	There are 96 footballs. They are shared between 3 teams. How many footballs does each team get? $96 \div 3=32$ How many groups of 3 in 90? How many groups of 3 in 6? How many groups of 3 in 96?
To use arrays to divide.	Children will link division to multiplication by using arrays. They will begin writing numbers sentences to show what they can create. $\begin{aligned} & 6 \times 4=24 \\ & 4 \times 6=24 \\ & 24 \div 6=4 \\ & 24 \div 4=6 \end{aligned}$	Children will draw or be given a pictorial representation of an array. They will circle the array to split it into groups to make multiplication and division sentences. $24 \div 6=4$ STEM: 4 multiplied by 6 equals 24 so 24 divided by 6 equals 4.	Children will find the inverse of multiplication and division sentences by creating linking number sentences. $\begin{aligned} & 6 \times 4=24 \\ & 4 \times 6=24 \\ & 24 \div 6=4 \\ & 24 \div 4=6 \end{aligned}$

To divide with whole numbers and represent remainders.

Children will use a range of concrete resources to divide between groups and see what is left over.

Stem Sentence
18 divided by 4 equals 4 in each group and 2 left over.

Reasoning:

18 divided by 4 must have a remainder because I know that $4 \times 4=16$ and 18 is 2 more

Year 4

Year 5

 sharing, doubling, halving, array, number pattern, equal, unequal, odd, even, dividend, divisor, quotient.

 Strategy	Concrete	Pictorial	Abstract

To establish whether a number up to 100 is prime and recall prime numbers up to 19 .	Children find prime numbers and composite (non-prime numbers) by using arrays. They understand that composite numbers form arrays and prime numbers cannot be arranged into arrays.	Children use jottings and pictorial representations to investigate composite and prime numbers.	Children use their knowledge of multiples and factors to find the prime numbers up to 100. They eliminate numbers that have factors other than 1. They can recall all prime numbers up to 19.
To divide whole numbers and those involving decimals by 10,100 and 1,000	Children use resources to understand what 10,100 and 1000 times bigger looks like.	Children use place value grids to divide numbers by 10 , 100 and 1000 s. They understand the movement of the	Children apply their knowledge of place value to divide numbers by 10,100 and 1000, including decimal numbers. $\begin{aligned} & 3450 \div 10=345 \\ & 345 \div 100=3.45 \\ & 2.67 \div 10=0.267 \\ & 12.7 \div 1000=0.0127 \end{aligned}$ They apply their understanding to more complex number puzzles and word problems.
		$4.12 \div 10=0.412$ They apply this knowledge to decimal	$\begin{array}{lllll} 9,700 & 907 & 9,007 & 970 & 9,070 \end{array}$ Write the missing number to make this division correct. $75 \div \square=7.5$
			A PS4 is on for sale at a tenth of its original price. It usually costs£ 450.90 . How much is it at the sales?

Loddington CE Primary Calculation Policy- Division

Year 6

Key Vocabulary: factors, multiples, groups of, share, equal groups, division, divide, divided by, divided into, left over, remainder, array, prime numbers, composite numbers, grouping, groups of, sharing, doubling, halving, array, number pattern, equal, unequal, odd, even, dividend, divisor, quotient.

Objective \& Strategy	Concrete	Pictorial	Abstract
To identify common factors.	Children use physical objects to create arrays to support their understanding of factors. Find the common factors of 18 and 24 The common factors are 1,2,3 and 6 .	Children investigate finding all factors of a number by drawing arrays. They then find factors which are the same in both numbers. Find the common factors of 18 and 24 Factors of 18 The common factors are 1,2,3 and 6.	Children use their knowledge of multiplication and division facts to find factors of numbers. Find the common factors of 18 and 24 Factors of 18 Factors of 24 (1) $\times 18$ (1) $\times 24$ (2) $\times 9$ (2) $\times 12$ (3) \times (6) (3) $x 8$ The common factors are 1,2,3 and 6.
To establish whether a number up to 100 is prime and recall prime numbers up to 19.	Children find prime numbers and composite (non-prime numbers) by using arrays. They understand that composite numbers form arrays and prime numbers cannot be arranged into arrays.	Children use jottings and pictorial representations to investigate composite and prime numbers.	Children use their knowledge of multiples and factors to find the prime numbers up to 100 . They eliminate numbers that have factors other than 1. They can recall all prime numbers up to 19 .

